| HIRANUMA APPLICATION DATA | Automatic Titrator | Data No. | A5 | Oct. 7,
 2022 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FOOD | Continuous measurement of citric acid | | | |
| and vitamin C in soft drink | | | | |

1. Abstract

Example of sequential titration for vitamin C and citric acid in a soft drink is introduced here.

(1) Firstly, perform neutralization titration for citric acid with sodium hydroxide standard solution.

(2) After the titration, add acetic acid to adjust to acidic pH . Perform redox titration for vitamin C (ascorbic acid) by iodine standard solution.

The sequential titration of citric acid and vitamin C will be possible by additional option (buret and simplified dispenser).

2. Configuration of instruments and reagents

(1) Configuration

Main unit : Hiranuma Automatic Titrator COM series
Option : One buret, One dispenser (Peristaltic pump type)
Electrodes : - Glass reference electrode GR-501BZ (for measurement of citric acid and vitamin C), Connect to IE-1.

- Platinum electrode PT-301 (for measurement of vitamin C), Connect to IE-2.
(2) Regents

Titrant	$: 0.1 \mathrm{~mol} / \mathrm{L}$ Sodium hydroxide standard solution (for citric acid)	
		$0.05 \mathrm{~mol} / \mathrm{L}$ Iodine standard solution (for vitamin C)
Additive solution $:$	$: 10 \%$ Acetic acid solution 5 mL (for pH adjustment)	

3. Measurement procedure

(1) Dispense 5 mL of sample into a 100 ml beaker with volumetric pipet.
(2) Add 40 mL of pure water.
(3) Immerse the electrodes and start titration with sodium hydroxide standard solution.
(4) After the above titration, dispense 5 mL of 10% acetic acid solution automatically (option: simplified dispenser).
(5) Titrate with $0.05 \mathrm{~mol} / \mathrm{L}$ iodine standard solution (option; buret).

4. Measurement conditions and results

Examples of titration conditions

(1) Titration of citric acid with sodium hydroxide standard solution

Cndt No.	1						
Method	Auto		ConstantNo.	1	Mode No.	4	
Buret No.	1		Size	5.0 mL	Pre Int		sec
Amp No.	1		Blank	0.0 mL	Del K	9	
D. Unit	pH		Molarity	$0.1 \mathrm{~mol} / \mathrm{L}$	Del Sens		mV
S-Timer	10	sec	Factor	1.005	Int Time		sec
C.P. mL	0.00	mL	K	64	Int Sens	3	mV
T Timer	0	Sec	L	0.0	Brt Speed	2	
D.P. mL	0.00	mL			Pulse	40	
End Sens	500		Unit	\%			
Over mL	0.10		Formula	(D-B)*K*F*M/(S*10)			
Max.Vol.			Digits Auto In Pram.	$3 \text { Non }$			

(2) Dispense of 10% acetic acid

Cndt No.	2	
Method	Disp	
Buret No.	2	
S-Timer	0	sec
Disp Vol.	5.00	mL

(3) Titration of vitamin C with iodine standard solution

Cndt No. Method	3		ConstantNo.	3	Mode No.	21	sec
	Auto						
Buret No.	3		Size	5.0 mL		0	
Amp No.	2		Blank	0.0 mL	Del K	2	
D. Unit	mV		Molarity	$0.05 \mathrm{~mol} / \mathrm{L}$	Del Sens	15	mV
S-Timer	10	sec	Factor	1.005	Int Time	3	sec
C.P. mL	0.0	mL	K	176.12	Int Sens	3	mV
T Timer	0	sec	L	0.0	Brt Speed	2	
D.P. mL	0	mL			Pulse	16	
End Sens	1000		Unit	$\mathrm{mg} / \mathrm{dL}$			
Over mL	0.10		Formula	(D-B)*K*F*M/S*100			
Max.Vol.			Digits Auto In Pram.	$3 \text { Non }$			

Measurement results

Number of measurement	Size (mL)	Titer (mL)	Citric acid $(\%)$	Titer (mL)	Vitamin C $(\mathrm{mg} / 100 \mathrm{~mL})$
1	5	6.826	0.878	0.190	33.630
2	5	6.821	0.877	0.182	32.214
3	5	6.823	0.878	0.191	33.807
Statistically	Average	0.878%	Average	$33.2 \mathrm{mg} / 100 \mathrm{~mL}$	
	Standard deviation	0.001%	Standard deviation	$0.9 \mathrm{mg} / 100 \mathrm{~mL}$	
	Coefficient of variant	0.066%	Coefficient of variant	2.6%	

Measurement of citric acid

Measurement of vitamin C

Examples of titration curve

5. Note

This method will be quite effective to a labor-saving, because it is possible to measure two target analyte successively by using two different indicator electrodes and titrants.

The measuring method with using iodine (Iodimetry) was introduced here. The measurement of vitamin C by indophenol method is also possible. Please note that the measurement method would be designated depending on the sample when measuring vitamin C .

Keyword : Food, Soft drink, Citric acid, Vitamin C, Neutralization titration, Redox titration, Iodine standard solution

