HIRANUMA APPLICATION DATA		Automatic Titrator	Data No.	G7	Apr. 5, 2019
Metals	Quantita	tive determination of	mangar	nese	ion

1. Abstract

Manganese ion can be determined by chelatometric titration. The stability constant of Mn (II)-EDTA complex is relatively large (13.81),¹ but the suitable pH range for the reaction between manganese ion and EDTA is confined from 7 to 11. Since manganese ion is oxidized with air in alkaline solution, ascorbic acid or hydroxylamine is added for the titration to avoid the oxidation. The report introduces an example of the titration performed at alkaline condition (pH 10) adjusted by ammonia.

 Mn^{2+} + Na_2EDTA \rightarrow Mn-EDTA + $2Na^+$

2. Configuration of instruments and reagents

(1) Configuration

	Main unit :	Hiranuma Automatic Titrator COM series (Photometric titrator unit type M)		
		with 650 nm optical filter		
	Electrode :	Glass - Reference electrode GR-501BZ (for pH confirmation)		
(2) Reag	gents			
	Titrant	: 0.01 mol/L EDTA standard solution		
	Buffer solution	1 : 25 % ammonia solution		
	Additive solut	ion : Ascorbic acid		
	Indicator	: TPC indicator		
		Mix TPC (Thymolphthalein complexone) and potassium nitrate in		
		1:99 ratio [w/w] (hundredfold dilution).		

3. Measurement procedure

- (1) Dispense 20 mL of sample with volumetric pipette into a 100 mL beaker.
- (2) Add about 60 mL of DI water.
- (3) Add about 0.1 g of ascorbic acid.
- (4) Add 3 ~4 drops of ammonia solution to adjust the pH to 10.
- (5) Add about 0.1 g of TPC indicator.
- (6) Immerse photometric probe into sample solution and titrate with 0.01 mol/L EDTA standard solution.

4. Measurement conditions and results

			I					
Cnd. No.	1							
Method	B cross		Constant No.	1		Mode No.	4	
Buret No.	1		Size	20	mL	Pre Int	0	sec
Amp No.	2		Blank	0	mL	Del K	9	
D.Unit	T%		Molarity	0.01	mol/L	Del Sens	0	mV
S- Timer	10	sec	Factor	1.000		Int Time	3	sec
C.P. mL	0	mL	K	54.94		Int Sens	3	mV
T.Timer	0	sec	L	0		Brt Speed	2	
D.P. mL	0	mL	Unit	PPM		Pulse	40	
End Sens	500		Formula					
Over mL	2	mL	(D-B)*K*F*M	*1000/S				
Max Vol.	20	mL	Decimal Places	3				
			Auto input parameter		None			

÷

Examples of titration conditions

Measurement results				
Number of	Size	Titrant	Manganese ion	
Measurement	(mL)	Volume (mL)	Concentration (ppm)	
1		7.592	208.552	
2	20	7.591	208.525	
3		7.591	208.525	
a		Avg.	208.5 ppm	
Statistic calculation		SD	0.0156 ppm	
		RSD	0.01 %	

Example of titration curve

5. Note

The following tips could help to improve the measurement accuracy.

Manganese ion generates the precipitates of manganese hydroxide $(Mn(OH)_2)$ under alkaline condition. When performing titration at alkaline pH, the excess ammonium salt or the auxiliary complexing agent like tartrate salts or triethanolamine should be added before the titration. Regarding the interference by the coexistent ions, please note that a lot of metal ions interfere the titration at pH around 9 ~ 10.

Keywords : Manganese ion, Photometric titration, Chelatometric titration

References

(1) K. Ueno, "Chelatometry", 1989, Nankodo, Tokyo.

*Some measurement would not be possible depending on optional configuration of system.

