HIRANUMA	APPLICATION	' DATA
----------	-------------	--------

Automatic Titrator

Data No. H5

Oct. 7, 2022

SODA PULP INDUSTRY

Determination of residual alkali in sodium hypochlorite

1. Abstract

Sodium hypochlorite is produced by having sodium hydroxide absorb chlorine gas. Produced sodium hypochlorite contains sodium chloride generated by the degradation of hypochlorous acid.

This report introduces an example for the determination of residual alkali (sodium hydroxide, sodium carbonate) in the sodium hypochlorite with potentiometric titration. The procedure is described as follows: Add hydrogen peroxide to sodium hypochlorite to decompose the sodium hypochlorite (reaction (1)). Run neutralization titration with hydrochloric acid standard solution (reaction (2) ~ (4)). The pH reaches at around 8 on the reaction of (2) and (3). In the case of sodium carbonate, the sodium hydrogen carbonate generated on reaction (3) is continuously titrated with hydrochloride acid, and pH reaches to around 4 at the end point on the reaction (4). The reaction from (2) to (4) and related titration curve are illustrated in figure 1.

Titration volume for sodium hydroxide can be calculated by subtracting titration volume (b mL) of 2^{nd} end point titration from titration volume (a+b mL) of 1^{st} end point.

The concentration of sodium carbonate can be determined by titration volume of 2nd end point. Therefore sodium hydroxide and sodium carbonate can be determined separately with successive titration. Inflection point at around pH 11.5 is expected as the end point for sodium hydroxide, but the inflection point is unclear. Therefore it is not identified as the end point on this titration.

Figure 1 Neutralization titration curve for sodium hydroxide and sodium carbonate with hydrochloric acid

2. Configuration of instruments and reagents

<u> </u>						
(1) Configuration of instrum	ments					
Main unit	: Hiranuma Automatic Titrator COM series					
Electrodes	: Glass electrode	GE-101B				
	: Reference electrode	RE-201Z				
	*Instead of above electrode, the following electrodes are useable.					
	• GR-501B (Glass reference combination electrode)…Fixed sleeve type					
	• GR-511B (Glass reference combination electrode)…Moveable sleeve type <remark> Combination with PT-301 allows to measure available chloring</remark>					
	sodium hypochlorite					
(2) Reagents						
Titrant	: 0.2 mol/L Hydrochloric acid	d standard solution				
Additive solution	: 1 mL of 30 % Hydrogen per	roxide				

3. Measurement procedure

(2)

- (1) Dispense 2 mL of sample and weigh accurately.
- (2) Add 30 mL of DI water.
- (3) Add 1 mL of 30 % hydrogen peroxide to decompose the sodium hypochlorite. Please note that it reacts vigorously in this procedure.
- (4) Immerse the electrodes and titrate with 0.2 mol/L hydrochloric acid standard solution.

4. Measurement conditions and results

Examples of titration conditions

(1) Measurement condition of sodium chloride and sodium carbonate

Cndt No.	1							
Method	Auto		ConstantNo.	1		Mode No.	5	
Buret No.	1		Size	0	g	Pre Int	0	sec
Amp No.	1		Blank	0	mL	Del K	5	
D. Unit	pH		Molarity	0.2	mol/L	Del Sens	0	mV
S-Timer	60	sec	Factor	1.004		Int Time	3	sec
C.P. mL	0	mL	Κ	40.0		Int Sens	3	mV
T Timer	0	sec	L	0		Brt Speed	2	
D.P. mL	0	mL	Unit	%		Pulse	40	
End Sens	700		Formula				0.05	mL
Over mL	0	mL	(VA-VB)*K*F*M/(S×10)					
Max.Vol.	20	mL	Decimal Places	4				
			Auto In Pram.		None			

Cndt No.	2							
Method	Auto		Constant No.	2		Mode No.	5	
Buret No.	1		Size	0	g	Pre Int	0	sec
Amp No.	1		Blank	0	mL	Del K	5	
D. Unit	pH		Molarity	0.2	mol/L	Del Sens	0	mV
S-Timer	0	sec	Factor	1.004		Int Time	3	sec
C.P. pH	9.0	pН	Κ	105.99		Int Sens	3	mV
T Timer	0	Sec	L	0		Brt Speed	2	
D.P. pH	6.0	pН	Unit	%		Pulse	40	
End Sens	500		Formula				0.05	mL
Over mL	0.3	mL	(D-B)*K*F*M/(S×10)					
Max.Vol.	20	mL	Decimal Places	4				
			Auto In Pram.		None			

(2) Measurement condition of sodium carbonate

<NOTE> Connect condition of (1) and (2) for the titration.

Measurement results										
Number of	Size	1 st End point	Sodium	2 nd End point	Sodium					
Measurement	(g)	Titrant Volume(mL)	Hydroxide (%)	Titrant Volume (mL)	Carbonate (%)					
1	2.5456	6.770	1.6149	1.652	1.3812					
2	2.5288	6.723	1.6005	1.684	1.4173					
3	2.5144	6.673	1.5835	1.716	1.4525					
		Avg.	1.600 %	Avg.	1.417 %					
		SD	0.016 %	SD	0.036 %					
		RSD	0.98 %	RSD	2.52 %					

5. Note

Since the residual sodium hypochlorite could cause measurement errors, the excess hydrogen peroxide should be added to decompose sodium hypochlorite completely.

Keywords: Sodium hypochlorite, Residual alkali, Sodium hydroxide, Sodium carbonate, Neutralization titration

*Some measurement would not be possible depending on optional configuration of system.

