Organic acid		sodium ascorbat	te		
Organia asid	Fraction	al determination of as	corbic a	cid	and
HIRANUMA APPLICATION DATA		Automatic Titrator	Data No.	K8	Feb. 10, 2021

1. Abstract

Ascorbic acid has properties as an acid and a strong reducing agent. On the other hand, sodium ascorbate doesn't have a function as an acid but works as a reducing agent as well as ascorbic acid. The quantitative determination method for ascorbic acid is prescribed in JIS K 9502 and Japanese pharmacopeia. There are two determination methods for ascorbic acid; neutralization titration and iodine titration.

The fractional determination method for ascorbic acid and sodium ascorbate is introduced in this report. First, ascorbic acid is determined by the neutralization titration with sodium hydroxide standard solution (formula (1)). After that, the total amount of ascorbic acid (ascorbic acid and sodium ascorbate) is measured by the redox titration with iodine standard solution (formula (2) and (3)). The sodium ascorbate is determined by the subtraction of the ascorbic acid from the total amount of ascorbic acid.

(I) Reaction formula for neutralization titration

$C_6H_8O_6$ + NaOH \rightarrow $C_6H_7NaO_6$ + H_2O	•••(1)
(II) Reaction formulae for redox titration	
$C_6H_8O_6$ + I_2 \rightarrow $C_6H_6O_6$ + 2HI	•••(2)
$C_6H_7NaO_6 + I_2 \rightarrow C_6H_5NaO_6 + 2HI$	•••(3)

2. Configuration of instruments and reagents

(1) Configuration

Main unit	:	Automatic Titrator COM series							
Option	:	One buret and one buret head							
Electrode	:	Glass reference electrode	GR-501BZ	Connect to IE-1.					
	:	Platinum electrode	PT-301	Connect to IE-2.					

(2) Reagents

Titrant	:	0.1 mol/L Sodium hydroxide standard solution		
		0.05 mol/L Iodine standard solution		
Additive	:	2 % Metaphosphoric acid solution		

3. Measurement procedure

- (1) Measurement for ascorbic acid
 - (i) Take approx. 0.4 g of sample into a 100 mL beaker and weigh it accurately.
 - (ii) Add approx. 40 mL of DI water.
 - (iii)Immerse the electrodes to start titration with 0.1 mol/L sodium hydroxide standard solution.
- (2) Measurement for sodium ascorbate
 - (i) Take approx. 0.4 g of sample into a 100 mL beaker and weigh it accurately.
 - (ii) Add 50 mL of 2 % metaphosphoric acid solution.
 - (iii)Immerse the electrodes to start titration with 0.05 mol/L iodine standard solution with using optional buret and buret head.

4. Measurement conditions and results

Examples of titration conditions

Cndt No.	1							
Method	Auto		Constant No.	1		Mode No.	4	
Buret No.	1		Size	0.4036	g	Pre Int	0	sec
Amp No.	1		Blank	0	mL	Del K	9	
D. Unit	pН		Molarity	0.1	mol/L	Del Sens	0	mV
S-Timer	5	sec	Factor	1.004		Int Time	3	sec
C.P. mL	0	mL	Κ	176.13		Int Sens	3	mV
T Timer	0	sec	L			Brt Speed	2	
D.P. mL	0	mL	Unit	mg/g		Pulse	40	
End Sens	200		Formula					
Over mL	0.2	mL	(D-B) ³	*K*F*M/S				
Max Vol.	20	mL	Decimal places	4				
			Auto input parameter	r	None			

(1) Measurement for ascorbic acid

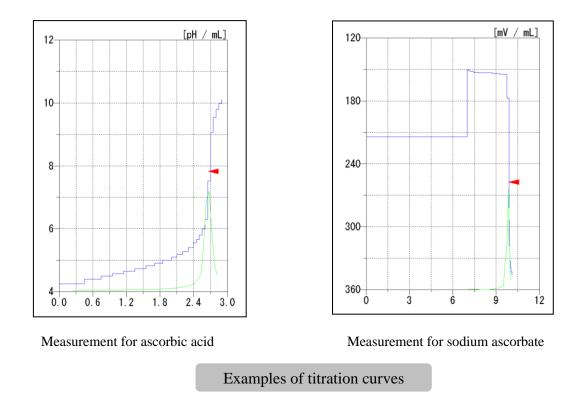
2 0.4042 0 0.05 1.001	g mL mol/L	Mode No. Pre Int Del K Del Sens	20 0 2	sec
0.4042 0 0.05 1.001	mL	Pre Int Del K	0 2	sec
0 0.05 1.001	mL	Del K	2	sec
0.05 1.001				
1.001	mol/L	Del Sens	0	
			0	mV
1		Int Time	3	sec
176.13		Int Sens	3	mV
0		Brt Speed	2	
mg/g		Pulse	40	
-B)*K*F*M/S				
4				
neter	None			
	3			
0.4042	g			
0	mL			
0	mol/L			
0				
116.92	*1			
1.125	*2			
mg/g				
(CA-K)*L				
4				
ieter	None			
	mg/g -B)*K*F*M/S 4 eter 0.4042 0 0 0 116.92 1.125 mg/g (CA-K)*L 4	0 mg/g -B)*K*F*M/S 4 eter None 3 0.4042 g 0 mL 0 mol/L 0 116.92 *1 1.125 *2 mg/g (CA-K)*L 4	$\begin{array}{cccc} 0 & & & & Brt Speed \\ mg/g & & Pulse \\ Pulse \\ Pulse \\ -B)*K*F*M/S & & & \\ 4 & & & \\ eter & None \\ \\ eter & None \\ \end{array}$	0 Brt Speed 2 Pulse 40 Pulse 40 Pulse 40 Pulse 40 Pulse 40 Pulse 40 Pulse 40

((2)	Measurement	for	sodium	ascorbate
٠.	<i></i>	wicasurement	101	sourum	ascorbate

*1 K (coefficient 1): Result of ascorbic acid by neutralization titration

 $^{*2}L$ (coefficient 2): Coefficient to convert ascorbic acid to sodium ascorbate (C₆H₇NaO₆(198.11) / C₆H₈O₆(176.13))

Measurement results


Measurement results of ascorbic acid

Meas. No.	Size (g)	Titrant volume (mL)	Ascorbic acid (mg/g)	Statistic calculation	
1	0.4036	2.671	117.028	Average	116.92 mg/g
2	0.4021	2.659	116.931	Standard deviation	0.12 mg/g
3	0.4055	2.678	116.796	Coefficient of variation	0.10 %

Meas. No.	Size (g)	Titrant volume (mL)	Total ascorbic acid (mg/g)	Sodium ascorbate (mg/g)	Statistic calculation	
1	0.4042	9.858	215.001	110.341	Average	110.70 mg/g
2	0.4056	9.922	215.671	111.095	Standard deviation	0.38 mg/g
3	0.4064	9.925	215.275	110.649	Coefficient of variation	0.34 %

Measurement results of sodium ascorbate

5. Note

Another determination method of ascorbic acid

The iodine titration method is used for the determination of ascorbic acid in this report, but there is an indophenol method as another determination method for ascorbic acid; the color change of indophenol from blue to red under metaphosphoric acid is detected as the end point of titration in this method. The relatively-high selectivity on the determination of ascorbic acid in fruit juice etc. compared with the iodine titration method is the character of the indophenol method.

Keywords: Fractional determination of ascorbic acid and sodium ascorbate, Neutralization titration, Redox titration, Iodine titration

*Some measurement would not be possible depending on optional configuration of system.

