HIRANUMA APPLICATION DATA		Karl Fischer Titrator	Data No.	KF2	Jun.6. 2017		
Water contents	Alcohols						

1. Abstract

Water content of Alcohols is determined by Karl Fischer coulometric titrator. In coulometric titration, iodine of Karl Fischer reagent is generated by electrolysis and generated iodine quantitatively reacts with water. Reaction formula is described below.

$$H_2O + I_2 + SO_2 + 3RN + CH_3OH \rightarrow 2RN \cdot HI + RN \cdot HSO_4CH_3$$

$$2RN \cdot HI \rightarrow I_2 + 2RN + 2H^+ + 2e^-$$

Alcohols do not interfere the Karl Fischer reaction and direct injection method could apply. Anode solution is selected in accordance with sample solubility. General-use anode solution contains methanol as solvent. Alcohols with long carbon chain have low solubility in methanol. In that case, use of anode solution for oil is appropriate.

When fritless cell is used, cathode solution is not necessary.

2. Apparatus and Reagents

(1) Apparatus

Titrator : Karl Fischer Coulometric titrator AQ-2200A

Electrolytic cell : Standard Cell

Fritless Cell

(2) Reagents

Anode solution : Hydranal coulomat AG (for general use, nonhalogenated)

Cathode solution : Hydranal coulomat CG

3. Procedure

- (1) Fill 100 mL of anode solution and one ampoule of cathode solution into the electrolytic cell as shown in Fig.3.1.
- (2) Start blanking to attain stable background.
- (3) Wash the syringe with sample.
- (4) Draw the sample into syringe and then weigh the syringe.
- (5) Inject sample from rubber septum of electrolytic cell as shown in Fig.3.2.
- (6) Start titration. Measurement parameter is shown in Table 4.1.
- (7) Weigh the syringe again and then set the difference of weight to sample size.

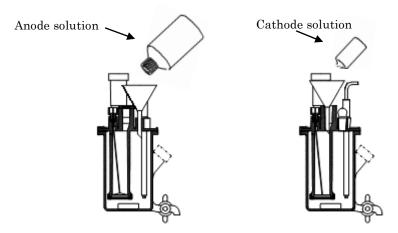


Fig.3.1. Preparation of the reagents.

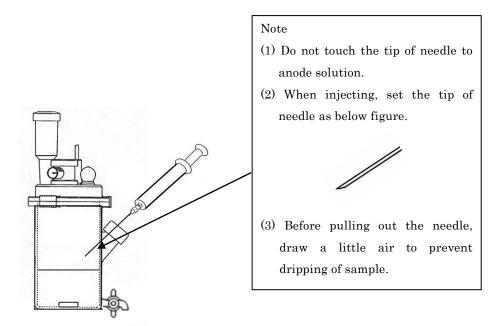


Fig.3.2. Injection of sample.

4. Parameters and results

Table 4.1. Parameters

_		
Condition File		
Cal Mode	0:Sample weight (net)	
	$X=(H_2O-BLANK)/SIZE$	
Interval Time	20	sec
Current	SLOW	
S.Timer	0	min
Blank Value	0	ug
Unit Mode	AUTO	
Auto Interval	0	g
Minimum Count	5	ug
Back Ground	ON	
Sample Size Input	Every Time	
Cell Type	Standard / Fritless	

Table 4.2. Results of water content measurement in alcohols

Sample	Apparatus	Cell	Reagent	Sample Size (g)	water (µg)	Water content
Methanol	AQ	Standard	AG	0.5988	672.9	1124 ppm
			CG	0.8890	991.6	1115
				0.8710	973.6	1118
		Fritless	AG	0.9415	1047.4	1112 ppm
				0.8964	996.7	1112
				0.8739	972.3	1113
2-propanol	AQ	Standard	AG	1.5078	138.9	92.1 ppm
• •	-		CG	1.6015	145.7	91.0
				1.6574	152.6	92.1
		Fritless	AG	1.5623	142.7	91.3 ppm
			-	1.5496	139.4	90.0
				1.5832	142.9	90.3
2-methoxyethanol	AQ	Standard	AG	0.86583	156.4	180.6 ppm
			CG	1.36865	243.5	177.9
				0.83448	150.1	179.9
		Fritless	AG	1.0574	188.2	178.0 ppm
				0.95761	172.1	179.7
				1.02781	185.3	180.3
n-hexylalcohol	AQ	Standard	AG	0.87698	132.1	150.6 ppm
			CG	0.92031	138.0	149.9
				0.81105	124.0	152.9
		Fritless	AG	0.80510	122.9	152.7 ppm
			-	0.85949	131.1	152.5
				0.97448	148.7	152.6

5. Note

- (1) Use dried syringe and syringe vial in Fig.5.1, for preventive of contamination by atmospheric water.
- (2) Put appropriate anode solution in use according to the solubility of the sample. For example, Hydranal Coulomat AG-H and Oil are suitable for oils.

Note: these reagents does not correspond to Fritless cell.

Fig.5.1. Draw the sample from syringe vial.

