Drugs and	Def	cermination of sodi	lım acef	ate	2018
HIRANUMA APPLI	CATION DATA	Automatic Titrator	Date No.	B2	Sep. 12,

with perchloric acid titration

1. Abstract

Medicines

Sodium acetate is widely used in chemical and medical industry (E.g. Buffer, Antifreezing agent, Alkalizing supplements, Dye chemical, Hydragogue). Determination method of sodium acetate is described on Japanese Pharmacopoeia and Japanese Industrial Standard (JIS K8371). Both methods employ perchloric acid titration method, dissolve the sample in glacial acetic acid and titrate with perchloric acid – acetic acid standard solution. Endpoint is detected by potentiometric titration with glass / reference electrodes.

 $CH_{3}COONa + HClO_{4} \rightarrow CH_{3}COOH + NaClO_{4}$

2. Configuration of instruments and Reagents

(1) Instruments		
Main unit	: Hiranuma Automatic Titrator	COM Series
Electrode	: Glass electrode	GE-101B
	Reference electrode	RE-201Z
	(Inner solution should be char	nged; it is described below)
(2) Reagents		
Titrant	: 0.1 mol/L perchloric acid in g	lacial acetic acid standard solution
Titration solvent	: Glacial acetic acid	
Electrolyte	: Saturated sodium perchlorate	in glacial acetic acid
	(For inner solution of reference	e electrode)

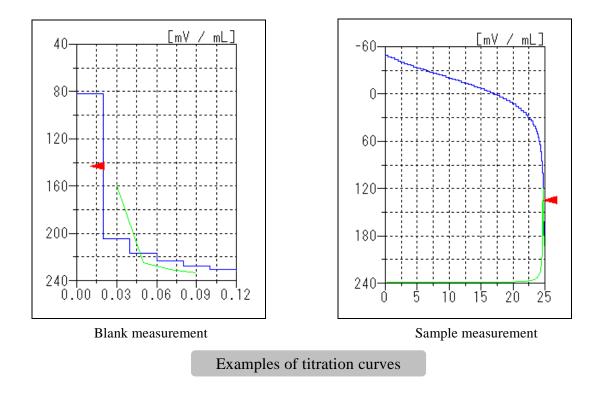
3. Measurement procedure

- (1) Take 0.2 g of the sample into a 100 mL tall-beaker and accurately weigh it.
- (2) Add 50 mL of acetic acid and dissolve the sample.
- (3) Immerse the electrodes and start titration with 0.1 mol/L perchloric acid in glacial acetic acid standard solution. Perform blank test without sample.

4. Measurement Conditions and Results

Measurement of blank								
Cndt No.	1							
Method	Auto		ConstantNo.	1		Mode No.	17	
Buret No.	1		Size	0	g	Pre Int	0	sec
Amp No.	1		Blank	0	mL	Del K	0	
D. Unit	mV		Molarity	0.1	mol/L	Del Sens	0	mV
S-Timer	60	sec	Factor	1.000		Int Time	5	sec
C.P. mL	0	mL	К	0		Int Sens	3	mV
T Timer	0	sec	L 0		Brt Speed	2		
D.P. mL	0	mL				Pulse	16	
End Sens	300		Unit	mL				
Over mL	0.1	mL	Formula	D				
Max.Vol.	1	mL	Digits	3				
			Auto In Pram.		Non			

Example of titration condition


Measurement	of	sample
mousurement	O1	Sumpro

Cndt No.	2							
Method	Auto		ConstantNo.	2		Mode No.	8	
Buret No.	1		Size	0	g	Pre Int	0	sec
Amp No.	1		Blank	0.01	mL	Del K	5	
D. Unit	mV		Molarity	0.1	mol/L	Del Sens	0	mV
S-Timer	60	sec	Factor	1.000		Int Time	5	sec
C.P. mL	0	mL	К	82.03		Int Sens	3	mV
D.P. mL	0	mL	L	0		Brt Speed	2	
End Sens	300					Pulse	40	
Over mL	0.2	mL	Unit	%				
Max.Vol.	40	mL	Formula	(D-B)*K*F	**M/(S*10)			
			Digits	3				
			Auto In Pram.		Non			

Measurement results

Maanuan of blank			Measurement of sample				
Measurement of blank		Measurement	Size	Titrant	Conc		
Measurement	Size	Titrant	No.	(g)	volume (mL)	(%)	
No.	(g)	volume (mL)	1	0.2029	24.690	99.778	
1	_	0.01	2	0.2021	24.553	99.617	
2	—	0.01	3	0.2010	24.440	99.701	
Statistical	Avg. (mL)	0.01			Avg. (%)	99.70	
result			Statistical result		SD (%)	0.0805	
			lesuit		RSD (%)	0.08	

5. Note

(1) Effect of water on perchloric acid titration

Water mixed in sample solution affects to the reaction system of perchloric acid titration because of the leveling effect, which results in a negative effect such as lowered quantitative performance or getting less sensitivity around the end point. Therefore please take care not to mix water in sample solution. Reference electrode for non-aqueous titration should be prepared as described in the following item (2), because water of KCl solution commonly used as inner solution for reference electrode could be mixed in sample solution.

(2) Preparation of inner solution for reference electrode

The inner solution of the reference electrode RE-201Z is filled with saturated KCl aqueous solution normally. For this measurement, it is necessary to replace inner solution to saturated sodium perchlorate in acetic acid solution. Replacement procedure is described below.

i) Prepare the saturated solution of sodium perchlorate in glacial acetic acid with reagent grade of these.

ii) Discharge inner solution from reference electrode RE-201Z and wash inside it with water and then acetic acid.

- iii) Fill the prepared inner solution into reference electrode from the supply port.
- iv) Cure the electrode for one day before use.
- (3) Experiment temperature

Acetic acid used as a solvent for the titrant has a relatively large thermal expansion coefficient, and when the temperature changes by 1 °C, the titrant causes a volume change of 0.1 %. For accurate measurement, factor titration and sample measurement should be performed at the same room temperature as much as possible.

Keywords : Sodium acetate, Perchloric acid titration, Nonaqueous titration, Neutralization titration,

*Some measurement would not be possible depending on optional configuration of system.

