HIRANUMA APPLICATION DATA

滴定データ COMシリーズ |データNo L17

25/1/6

潤滑油 石油製品

石油製品のチオール硫黄の測定

|1.測定の概要

石油製品のチオール硫黄の測定は、JIS K 2276「石油製品-航空燃料油試験方法」の「10.チオー ル(メルカプタン)硫黄分試験方法(電位差滴定法)」に記載されています。石油製品のチオール 硫黄の測定は、製品品質の維持や安全性の確保、規制遵守などの観点から重要な測定項目となっ ています。

本データシートでは、上述の JIS に従い、チオール硫黄を測定した例を紹介します。試料として ソルベントナフサにチオール硫黄分を添加した模擬試料を調製しました。

本測定法は、試料を2-プロパノール性酢酸ナトリウム溶媒に溶解したのち、銀-硫化銀電極、ガ ラス電極を用いて、2-プロパノール性硝酸銀標準液で電位差滴定を行う方法となります。硝酸銀 とチオール(メルカプタン)は定量的に反応し、銀メルカプチドとして沈殿します。滴定曲線に おける変曲点を終点として検出し、チオール硫黄を定量します。

 $AgNO_3 + R-SH \rightarrow Ag-S-R + HNO_3$

2. 装置構成および試薬

(1)装置構成

本体 : 自動滴定装置 COM シリーズ

指示電極 : 銀電極 AG-312 (硫化銀皮膜)

比較電極 : ガラス電極 GE-101B

(2) 試薬

滴定液 : 0.01 mol/L 2-プロパノール性硝酸銀標準液

0.1mol/L 2-プロパノール性硝酸銀標準液 50mL を 500mL メスフラスコに

入れ、2-プロパノールで希釈して調製したもの。

滴定溶媒 : 酢酸ナトリウム三水和物 2.7g を溶存酸素を含まない純水 25mL に溶解し、

2-プロパノール 975mL に加えて調製したもの。

: 0.1 mol/L 2-プロパノール性硝酸銀標準液 試薬①

硝酸銀 8.5g を純水 50mL に溶解し、500mL メスフラスコに入れ、2-プロ

パノールで希釈して調製したもの。

: 硫化ナトリウム九水和物 3.05g を純水に溶解して 100mL に調製したもの。 試薬②

|3.測定手順

- (1)銀-硫化銀電極の作製
 - ① AG-312 の検出部(銀面)を研磨紙(アルミナ質研削剤 P1000)で磨きます。
 - ② 硫化ナトリウム溶液 8mL と滴定溶媒 100mL の混合液に①の電極を浸漬します。
 - ③ 撹拌子を入れ、かき混ぜながら 0.1mol/L2-プロパノール性硝酸銀標準液 10mL を 10 分間を要 して徐々に加えます。
 - ④ 純水で洗浄し、柔らかい布で拭います。

(2) チオール硫黄の測定

- ① 試料をホールピペットで 20mL 採取し、200mL のトールビーカーに入れます。
- ② 滴定溶媒 100mL を加え、撹拌子を入れて撹拌して試料を溶解します。
- ③ 電極を浸漬し、0.01mol/L 2-プロパノール性硝酸銀標準液で滴定します。変曲点を終点として検出します。また、同様の操作で空試験を行ってブランクを求めます。

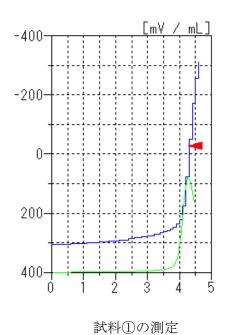
4. 測定条件例および測定結果

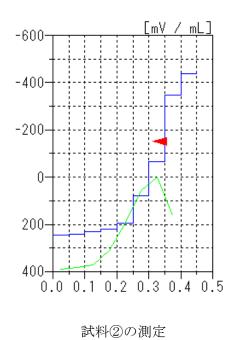
滴定条件例

ブランクの測定

コンディション No.	1					
メソッド	変曲点検出	コンスタント No.	1	制御モード No.	17	
ビュレット No.	1	S:試料量	0 g	山越えタイマ	0	秒
アンプ No.	1	B:ブランク mL	0 mL	滴加係数	0	
表示単位	mV	M:滴定液濃度	0 mol/L	滴加感度	0	mV
スタートタイマ	10 秒	F:ファクタ	0	待ち時間	10	秒
連続滴加 mL	0 m	∠ K:係数1	0	待ち感度	1	mV
反応タイマ	0 秒	L:係数2	0	ビュレット速度	2	
検出開始 mL	0 m	_		最小滴加量	16	
検出感度	500	結果単位	mL			
過滴加 mL	0.1 m	計算式	D			
最大滴加 mL	1 m	. 小数点以下桁数	3			

試料の測定


コンディション No.	2							
メソッド	変曲点検出	1	コンスタント No.	2		制御モード No.	41	
ビュレット No.	1		S:試料量	0	g	最大待ち時間	300	秒
アンプ No.	1		B:ブランク mL	0	mL	滴加係数	5	
表示単位	mV		M:滴定液濃度	0.01	mol/L	滴加感度	0	mV
スタートタイマ	10 - 5	秒	F:ファクタ	1.000		待ち時間	10	秒
連続滴加 mL	0 1	mL	K:係数1	32.06		待ち感度	1	mV
反応タイマ	0 - 5	秒	L:係数2	0		ビュレット速度	2	
検出開始 mL	0 1	mL				最小滴加量	40	
検出感度	500		結果単位	ppm				
過滴加 mL	0.2	mL	計算式					
最大滴加 mL	20		(D-B)*K*F*M*1000/S					
			小数点以下桁数	3				



測定結果

試料	測定回数	試料量	試料量※	滴定值	チオール硫黄	統計計	算結果	
		(mL)	(g)	(mL)	(ppm)			
ブランク	1	(初期電位の)時点でサンプ	かの終点電	位を超えていたため	、ブランクは 0mL と	こしました)	
	1			4.283	79.372	平均值	79.298	ppm
試料①	2	20	17.3	4.275	79.223	標準偏差	0.075	ppm
	3			4.279	79.298	変動係数	0.094	%
	1			0.323	5.992	平均值	5.868	ppm
試料②	2	20	17.3	0.313	5.806	標準偏差	0.107	ppm
	3			0.313	5.806	変動係数	1.83	%

[※] 試料量(g)は、試料量(mL)と試料の密度より算出しました。

滴定曲線例

5. 摘要

(1) 電極について

本測定に使用した電極は JIS 記載の通り、指示電極として硫化銀を皮膜した銀電極を使用します。なお、溶媒として 2-プロパノールを使用しているため、非水溶媒に耐性のある AG-312 を使用しました。

一方、比較電極としてはガラス電極を使用します。ガラス電極は一般的に中和滴定用の指示電極として使用しますが、本測定では比較電極として使用しています。ガラス電極を比較電極として使用する場合は、被滴定液の pH が滴定開始から終了まで一定である必要があります。本測定では溶媒中の酢酸ナトリウムが pH 緩衝能を有するため、一定の pH が保たれると考えられます。なお、電極のアンプへの接続先は、下表のようになります。

機種	ガラス電極	銀電極
COM-A19/COM-1760	IE-1	RE-1
COM-28	AMP1	AMP2 (変換ケーブルの RE ジャックに 接続)

(2) 滴加制御について

JIS K 2276によると、滴加毎の電位の安定判断として「毎分 6mV を超えなければ電位差は一定である」の記載があります。そのため、この制御にするためには、制御モードの「待ち時間」を60秒に、「待ち感度」を6mV に設定することで達成されます。しかしながら、本条件では、1滴加毎に必ず最低60秒間待たなければならないため、滴定時間が非常に長くなります。一方で同JISには、「一定の電位差になるまで待つことは重要であるが、大気中の酸素による硫黄化合物の酸化を避けるため、できるだけ全滴定所要時間を短くする」とも記載されています。本測定では、待ち時間を10秒、待ち感度を1mVとすることで、実質的に毎分6mVと同様の制御としつつ、測定時間の短縮を図りました。また、「最大待ち時間」を300秒に設定し、1滴加ごとの待ち時間の上限を設定しました。(「最大待ち時間」は、制御モード No.41~50を選択することで設定できるようになります)。その他、滴定値があらかじめ既知である場合は、「連続滴加 mL」を使用し、標準液を終点の0.5~1mL 手前まで一度に滴加することも、測定時間短縮に有効です。

(3) 2-プロパノール性硝酸銀標準液について

本測定に使用している硝酸銀標準液は 2-プロパノール性になりますので、一般の水系標準液より温度変化に伴う体積変化が大きくなります(1℃の変化で体積は約 0.1%変化します)。そのため、より正確に測定を行うためには、標準液の力価標定から試料の測定まで、できるだけ一定温度環境で測定を行うことを推奨します。

キーワード: JIS K 2276、石油製品、チオール硫黄、メルカプタン、硝酸銀、電位差滴定

